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bstract

In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection
fficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat
ydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA–artificial neural
etwork (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the

A optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA–ANN model is more efficient.
inally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency
ere determined.
2008 Elsevier B.V. All rights reserved.
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. Introduction

.1. Literature review on venturi scrubbers

In recent decades, venturi scrubbers have been used to remove
ollutants from effluent gasses. This device can remove very fine
issolved and adhesive particles present in pollutant gasses, and
an resist corrosive acids and bases. In this device, the removal
henomenon is based on the inertial impaction. The other col-
ision mechanisms such as interception and Brownian diffusion
lso exist, but they are very weak in comparison with the inertial
mpaction [1]. First, liquid is atomized into a high velocity gas
tream. The high specific area formed by droplets of liquid in
he scrubbing zone contributes to the effective elimination of
ne particles. High efficiency for relatively small particles, low
apital cost, and low maintenance costs are three major advan-
ages of this device. Venturi scrubbers consist of a circular or

ectangular section channel with three main parts: a convergent
ection, a throat and a divergent section (diffuser).

∗ Corresponding author. Tel.: +98 3412118298; fax: +98 3412120963.
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on efficiency

The performance of a gas cleaning equipment is evaluated
y means of pressure drop and collection efficiency. The overall
ollection efficiency is defined by the mass ratio of the removed
ust particles to the total inflow mass of dust particles. Partic-
late removal in a venturi scrubber has been studied by many
esearchers [1–3] and various mathematical models have been
eveloped. Studies have shown that the collection efficiencies
f laboratory-scale scrubbers are dependent on many variables,
uch as aerosol particle size, gas velocity, spray liquid rate
nd type of liquid injection [4]. Photographing of the throat of
he scrubber has shown the non-uniform distribution of water
roplets across the cross-section of the scrubber [5]. Compara-
ive gas cleaning performance of a pilot-scale venturi scrubber
as obtained for the three methods of water injection by Taheri

nd Hains [5]. For each method, the gas cleaning performance,
s a function of the pressure drop was measured by absorp-
ion of SO2 and collection efficiency for particles of methylene
lue of controlled sized. A mathematical model developed by
alvert [6] to predict particulate removal efficiency. The collec-

ion efficiency was obtained from mass balance for dust where

he amount of removed dust per droplet was determined from
he correlation of target efficiency as suggested by Walton and

oolcock’s experiment [7]. In Calvert’s model, a correction fac-
or was applied to take the effect of non-uniformity of water

mailto:amohebbi2002@yahoo.com
dx.doi.org/10.1016/j.jhazmat.2007.12.107
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Nomenclature

Dp particle diameter (�m)
Dth throat hydraulic diameter of venturi scrubber (m)
E collection efficiency
G volume rate of gas flow (m3/s)
L liquid flow rate (m3/s)
�P pressure drop across venturi scrubber (Pa)
r linear correlation coefficient between experimen-

tal data and neural network outputs
R2 regression constant
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Vgth gas velocity in the throat (m/s)

roplets into consideration. Calvert et al. [2] studied the effects
f particle size and wettability, venturi size and fluid flow rates
n particle collection efficiency. Taheri and Sheih [8] developed
three-dimensional mathematical model to study the collec-

ion efficiency as a function of operating conditions. They made
he assumption of a non-uniform distribution of water droplets.
he roles of heat and mass transfer in determining the particle
ollection efficiency have been studied by Placek and Peters
3]. The mechanisms of inertial impaction, interception, and
iffusiophoresis were analyzed simultaneously to account real-
stically for heat and mass transfer effects on particle collection.
zzopardi and Govan [9] presented a one-dimensional model of

he gas, dust and liquid flows in a venturi scrubber to consider liq-
id flowing as a film to calculate pressure drop and dust removal.
athikalajahi et al. [10,11] applied a diffusion model to obtain

he droplet concentration distribution in a venturi scrubber. They
tudied the effect of non-uniformity of droplet dispersion on par-
iculate removal efficiency [10,11]. This mathematical model
as been used to investigate the effect of important parameters
uch as liquid to gas flow rate ratio, gas throat velocity, liq-
id nozzle diameter and the angle of the divergent section on
fficiency of the scrubber. Ananthanarayanan and Viswanathan
12,13] used a simplified version of the model proposed earlier
y Viswanathan [14]. It takes into account the jet penetration
ength, the non-uniform distribution of liquid droplets, the ini-
ial momentum of the liquid, and the non-uniformity in the
roplet size distribution at the inlet. Goncalves et al. [15] consid-
red jet dynamics, in particular, jet penetration, as an important
esign parameter affecting the collection efficiency and pre-
ented a mathematical description of the trajectory, penetration
nd break-up of a jet in a venturi scrubber. Their model was
ased on the superficial wave formation and growth mechanism
escribed by Adelberg [16].

Some investigators including Kuznetsov and Oratovskii [17],
oyadzhiev [18], Volgin et al. [19], Beg and Taheri [20] have
ttempted to simulate the operation of the venturi scrubber for
as absorption. Johnstone et al. [4] reported a venturi scrubber
tudy in which SO2 was absorbed in 0.6N-NaOH solutions and

easured the amount of sulfur dioxide absorbed in the liquid at

arious distances from the point of liquid injection. They found
hat the mass transfer increased substantially as the liquid injec-
ion rate increased. Kuznetsov and Oratovskii [17] developed
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mathematical model for predicting chemisorption of CO2 by
aOH solution in cylindrical venturi type scrubber. The degree
f absorption was determined by the equation of

= 1 − exp(−m) (1)

here the number of transfer units is given by

= KF

V
(2)

In which K is the overall coefficient of absorption, m/h; F
he phase contact surface, m2; and V is the volumetric flow
ate of the gas mixture, m3/h. Volgin et al. [19] have studied
bsorption of SO2 in ammonium sulfite–bisulfate solution scrub-
ing system experimentally. The throat was rectangular with a
0 mm × 15 mm cross-section and a length of 13 mm. The extent
f absorption (in %) has been calculated from the following
quation:

= Pi − Pf

Pi − Pe
× 100 (3)

here Pi, Pf, and Pe are the initial, final, and equilibrium par-
ial pressure of SO2, in mmHg, respectively. The main results
f this experiment indicate that throat length is not important
or increasing the extent of absorption. Uchida and Wen [21]
pplied a complete mathematical model to gas absorption in a
enturi scrubber. They performed mass, heat and momentum
alances and obtained a set of differential equations relating the
roplet velocity and the gaseous pollutant concentration in both
he gas and liquid phase along the axial coordinate of the venturi
ube. They assumed a uniform droplet concentration distribution
n the scrubber. SO2 removal efficiency of a scrubber has been
nvestigated by Talaie et al. [22] using a three-dimensional math-
matical model. The model is based on a non-uniform droplets
oncentration distribution which is predicted from a dispersion
odel in the gas flow. Gas-phase mass transfer coefficient was

alculated by empirical equations. Gamisans et al. [23] studied
he absorption of SO2 and NH3 from the flue gas into NaOH
nd H2SO4 by using an industrial scale ejector-venturi scrubber
o determine the performance of the scrubber under different
onditions. Their results showed a strong influence of the liquid
crubbing flow rate on pollutant removal efficiency, but initial
ollutant concentration and the gas flow rate had slight effect.
avi et al. [24] used a non-dominated sorting genetic algorithm

GA) for optimization of a venturi scrubber. In their model,
wo objective functions were used, namely, maximization of the
verall collection efficiency and minimization of the pressure
rop together with three decision variables, the liquid–gas flow
atio, the gas velocity in the throat and the aspect ratio. Hills et al.
25] proposed a gas–liquid reactor, in which the two phases flow
n annular flow through a number of units consisting of a venturi
ollowed by a twisted tape inserted in the pipe. Their experiments
n a 38 mm pipe, with a 19 mm venturi throat, showed that up to

5% of the liquid can be atomized, at the cost of a pressure drop
f 0.2–0.3 bar. Nasseh et al. [26] have predicted pressure drop in
enturi scrubbers with artificial neural networks (ANNs). Their
esults were in good agreement with experimental data.
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Table 1
The range of experimental data used for training network no. 1

Venturi type Dp (�m) Vgth (m/s) L/G (×103 m3/m3) E Reference

R 66.446, 137.16 1.118–1.738 0.16–0.99 [28]
R 182.8 0.134–1.069 0.04–0.79 [2]
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Table 2
The range of experimental data used for training network no. 2

Venturi type Rectangular (6 in. × 34 in.)
L (m3/s) 0.00934–0.01325
�P (Pa) 4791.987–8994.19
Dp (�m) 0.67–1.15
E
R
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ectangular (6 in. × 34 in.) 0.47–1.5 66.5, 55.169, 60.959,
ectangular (4 in. × 12 in.) 0.75, 0.8, 1 228.6, 137.16, 91.44,

In the past decade, ANNs have been used intensively in var-
ous fields. The major reason for the rapid growth and diverse
pplications of neural networks is their ability to approximate
irtually any function in a stable and efficient way. In spite of the
ide range of applications, neural networks are still designed

hrough a time consuming iterative trial-and-error approach.
ence, the time and effort required for network design are totally
ependent on the nature of the task and the designer’s experi-
nce. This leads to a significant amount of time and effort being
xpended to find the optimum or near optimum structure of a
eural network for the desired task.

In this study, a GA is used for the first time in the design
f neural networks for predicting collection efficiency in ven-
uri scrubbers. A GA–ANN model has been created using the
xperimental data.

.2. Artificial neural network

Neural networks generally consist of a number of intercon-
ected processing elements or neurons. How the inter-neuron
onnections are arranged and the nature of the connections
etermines the structure of a network. How the strengths of the
onnections are adjusted or trained to achieve the desired overall
ehavior of the network is governed by its learning algorithm.
eural networks can be classified according to their structures

nd learning algorithms. In terms of their structures, neural net-
orks can be divided into two types: feed forward networks

nd recurrent networks. In a feed forward network, the neurons
re generally grouped into layers. Signals flow from the input
ayer through the output layer via unidirectional connections,
he neurons being connected from one layer to the next, but not
ithin the same layer. Multi-layer perceptrons (MLPs) are per-
aps the best known type of feed forward network. The MLP
as three layers: an input layer, an output layer and an inter-
ediate or hidden layer. Neural networks are trained by two
ain types of learning algorithm: supervised and unsupervised

earning algorithms. A supervised learning algorithm adjusts the
trengths or weights of the inter-neuron connections according
o the difference between the desired and actual network out-

uts corresponding to a given input. An example of supervised
earning algorithms is the back-propagation algorithm. One of
he learning algorithms suitable for training MLPs is the GA
27].
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able 3
he range of experimental data used for training network no. 3

enturi type Dp (�m) Vg (m/s)

ircular (2 in.) 0.55, 1, 2, 4.6 60.96, 121.92, 154.838
ectangular (4 in. × 12 in.) 0.75, 0.8, 1 228.6, 137.16, 91.44, 1
0.923–0.986
eference [28]

.3. Genetic algorithm

GAs were invented by John Holland in the 1960s and were
eveloped by Holland and his students in the 1960s and 1970s.
A is one of the stochastic optimization methods which simu-

ates the process of neural evolution. This learning algorithm is
ased on principles from genetics and evolution. The algorithm
tarts with a randomly generated population of chromosomes
nd the applied genetic operators are the selection, crossover
nd mutation operators. The selection operator chooses chro-
osomes from the current population for reproduction. The

rossover operator creates two new chromosomes from two
xisting chromosomes by cutting them at a random position and
xchanging the parts following the cut. The mutation operator
roduces new chromosomes by randomly changing the genes
f existing chromosomes. Together, these operators simulate a
uided random search method which can eventually yield the
ptimum set of weights to minimize the differences between the
ctual and target outputs of the neural network.

. Methodology

The previous investigators [9–15,28], showed the most
mportant parameters on the collection efficiency of the ven-
uri scrubber were liquid to gas flow rate ratio, pressure drop
cross the venturi scrubber, gas throat velocity, liquid nozzle
iameter and the angle of the divergent section. In present work,
hese parameters were used as inputs to the ANN–GA network
nd collection efficiency as an output.

The purpose of this study was to apply GAs to determine

he number of neurons in the hidden layers, the momentum and
he learning rates for minimizing the time and effort required
o find the optimal architecture. Four separate networks were
esigned. The first three investigated the particle collection effi-

L/G (×103 m3/m3) f Reference

0.16042–4.545 0.22–1.2 [2]
82.8 0.134–1.069 0.31–0.78 [2]
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Table 4
The range of experimental data used for training network no. 4

Venturi type Rectangular
G (m3/s) 0.295–0.521
Vgth (m/s) 41.45–73.152
L/G (m3/m3) 0.0949–0.728
E 0.391–0.886
R
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Fig. 1. The design of ANNs.

Table 5
Summary of the networks architecture in hidden layer by GA method

Network Number of neurons Momentum rate Learning rate

1 4 0.113 0.836
2 2 0.921 0.720
3
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den layer, respectively. These numbers of neurons for the hidden

T
R

N

1
2
3
4

eference [29]

iency in the venturi scrubber and the fourth network studied the
ollection efficiency of sulfur dioxide by alkaline solution. The
xperimental data were extracted from three rectangular venturi
crubbers with different sizes and one circular venturi scrubber.
wo rectangular venturi – 4 in. × 12 in. [2] and 6 in. × 34 in. [28]

n cross-section at the throat – were used for training the first net-
ork. The input vectors for this network were particle diameter

Dp), throat gas velocity (Vgth), liquid to gas flow rate ratio (L/G)
nd throat hydraulic diameter of the venturi scrubber (Dth). The
econd network was based on experimental data from the rect-
ngular venturi scrubber of Pease Anthony type [28] which is
in. × 34 in. in cross-section. The main parameters of this net-
ork were liquid flow rate (L), Dp and pressure drop across the
enturi scrubber (�P). The main parameters in the third network
ere Dp, Vgth, L/G and Dth, based on Calvert’s experimental data

or rectangular and circular venturi scrubbers [2]. In the fourth
etwork, we considered volume rate of gas flow (G), L/G and
gth as the input parameters for calculating the removal effi-
iency of the venturi scrubber. So, the fourth network had three
nputs and was trained based on experimental data from a rect-
ngular venturi which was 1.5 in. × 8 in. [29] in cross-section
t the throat. Tables 1–4 show the domain of input and output
arameters for the four networks. The ANNs contained three
ayers and feed forward back-propagation was used for training
he input data. The number of neurons in the first layer was 3
r 4. There was just one neuron in the output layer which for
etworks 1, 2 and 4 is collection (removal) efficiency and for
etwork 3 is f which is proportional to the collection efficiency
2] and defined as velocity ratio (i.e. Vr/Vg). Vr is droplet veloc-
ty relative to gas and Vg is gas velocity relative to duct. We also
sed one hidden layer for training networks and the number of
eurons in this layer was obtained by GA. The design of the
NNs is shown in Fig. 1.

In this study, the process of designing the networks was man-

ged by NeuroSolution for Excel Release 4.2 software which
ncorporates ANN and GA, and this was used to obtain the

l
m
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able 6
esults of two trial and error methods and their comparison to the GA method

etworks GA–ANN model Trial and e

r Number of neurons Method 1

r

0.993 4 0.992
0.988 2 0.984
0.951 2 0.950
0.988 3 0.985
2 0.862 0.872
3 0.112 0.679

ptimal network size and parameters in the ANN collection effi-
iency estimation model. Typically, 75% of the data were used
or training and cross-validation purposes. The remainders were
ategorized as testing data.

First we trained four networks in GA–ANN with the momen-
um algorithm. In this study, the roulette wheel and tournament
or the reproduction, one point and uniform for crossover and
niform for mutation operators were applied to train the net-
orks. Some tests were performed to represent the combination
f different options for crossover, reproduction operators, pop-
lation size and generation number.

After adjusting the parameters mentioned above in the train-
ng phase, it was found that the optimum number of neurons in
he hidden layer for networks 1–4 was 4, 2, 2 and 3, respectively.

. Results and discussions

In this study, four different experimental data sets have been
sed to design the networks. The number of data sets for training,
ross-validation and simulating networks 1, 2, 3 and 4 were 90,
6, 80 and 25, respectively.

Networks 1–4 contained 4, 2, 2 and 3 neurons in their hid-
ayers have been achieved by GA–ANNs. Table 5 gives the opti-
al momentum rate, learning rate and number of neurons in the

idden layer by the GA method.

rror methods

Method 2

Number of neurons r Number of neurons

9 0.982 11
7 0.986 4
7 0.95 5
6 0.980 2
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Table 7
GA–ANN performance for network no. 1

Performance Collection efficiency (E)

MSE 0.00162
NMSE 0.01570
MAE 0.02643
Min abs. error 0.00017
Max abs. error 0.11299
r 0.99334

Table 8
Summary report for network no. 1

Optimization summary Best fitness Average fitness

Generation number 13 18
M
F

m
r
m
d
f
L
s
p
i

o
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a
c
T
a
s
p
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a
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Fig. 3. Average fitness (MSE) vs. generation for network no. 1.

F
d

n
t
A
i
t

t
average of the minimum MSE taken across all of the networks
inimum MSE 0.004546 0.004546
inal MSE 0.004546 0.005017

Networks 1–4 have also been trained by two different
ethods of trial-and-error by changing the number of neu-

ons in the hidden layer from 2 to 20. In the first method,
omentum has been selected as the learning algorithm and the

efault values of NeuroSolution software have been adjusted
or momentum rate and learning rate. In the second method, the
evenberg–Marquardt learning algorithm has been used. Table 6
hows the results of the methods mentioned above and their com-
arison to the GA method. So, it is concluded that the GA method
s better than the trial-and-error method.

Table 7 reports the performance of network no. 1 in terms
f mean squared error (MSE), normalized mean squared error
NMSE), mean absolute error (MAE), minimum absolute error
nd maximum absolute error and the linear correlation coeffi-
ient (r) between experimental data and neural network outputs.
he ANN predictions are optimal if r, MAE, NMSE and MSE
re found to be close to 1, 0, 0, 0, respectively [30]. In the present
tudy, MSE is only used for the estimation of network training
erformance, whereas r, MSE, and NMSE are used to measure
he prediction performance of GA–ANN on the validation data

et.

The fitness function is an important factor for the convergence
nd stability of the genetic algorithm. Table 8 shows a summary
f the best fitness and the average fitness values for network

Fig. 2. Best fitness (MSE) vs. generation for network no. 1.

w

i

ig. 4. Comparison of the output of GA–ANN network no. 1 with experimental
ata.

o. 1. In this table, the minimum MSE (across all generations),
he generation of this minimum and the final MSE are displayed.
lso, corresponding plots which resulted from Table 8 are shown

n Figs. 2 and 3. Fig. 2 demonstrates the best fitness value versus
he number of generations.

In Fig. 3, the average fitness achieved during each genera-
ion of the optimization is illustrated. The average fitness is the
ithin the corresponding generation.
In Fig. 4, the outputs of network 1 are compared to the exper-

mental data for collection efficiency [28,2].

Fig. 5. Simulating results for the GA–ANN no. 1.
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Fig. 6. Simulating results for the GA–ANN no. 2.
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c

Fig. 9. The effect of particle diameter on the collection efficiency in venturi
scrubber (GA–ANN no. 1) at L/G = 0.00173 m3/m3 and Vgth = 66.45 m/s.
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In the next step, the calculated results of the GA–ANN no.
Fig. 7. Simulating results for the GA–ANN no. 3.

Figs. 5–8 show good agreement between the predicted and
xperimental data for networks 1–4.

Figs. 9 and 10 indicate the effects of particle diameter on the
ollection efficiency for network 1, for two different L/G and
gth values. Fig. 11 shows the effect of Vgth on the collection
fficiency. It is apparent that increasing gas throat velocity will
ncrease the collection efficiency. As can be seen, there is a

ood agreement between the experimental data and the results
f GA–ANNs.

Figs. 12–15 indicate the effect of L/G, Dp and Vgth on the
oefficient of f for network no. 3. As can be seen, there is a

Fig. 8. Simulating results for the GA–ANN no. 4.

1
m
p

F
s

ig. 10. The effect of particle diameter on the collection efficiency in venturi
crubber (GA–ANN no. 1) at L/G = 0.00144 m3/m3 and Vgth = 66.5 m/s.

ood agreement between experimental data and the GA–ANN
odel. As liquid to gas ratio increases, the collection efficiency

ncreases and the coefficient of f decreases. Increasing particle
iameter results in a decrease in f. This is in close agreement with
he fact that the collection of larger particles is more efficient.
n addition, increasing Vgth results in increasing f.
as presented in this work and the calculated results from the
odel of Ananthanrayanan and Viswanathan [13] were com-

ared with the experimental data. These results are represented

ig. 11. The effect of throat gas velocity on the collection efficiency in venturi
crubber (GA–ANN no. 1).
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Fig. 12. The effect of liquid to gas ratio on the coefficient of f in venturi scrubber
(GA–ANN no. 3).
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Fig. 15. The effect of throat gas velocity on the coefficient of f in venturi scrubber
(GA–ANN no. 3).
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ig. 13. The effect of particle diameter on the coefficient of f in venturi scrubber
GA–ANN no. 3) at L/G = 0.00454 m3/m3 and Vgth = 60.96 m/s.

n Fig. 16. As one can see, a better agreement exists between the
esults of GA–ANNs and the experimental data. AAPD shows
t statistically.

APD = 100

N

N∑

i=1

ηi
exp − ηi

cal

ηi
exp

(4)
APD for GA–ANN model = 2.04%; AAPD for Anan-
hanrayanan and Viswanathan’s model = 3.63%.

ig. 14. The effect of particle diameter on the coefficient of f in venturi scrubber
GA–ANN no. 3) at L/G = 0.003743 m3/m3 and Vgth = 60.96 m/s.

t
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e
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ig. 16. The comparison of experimental data of Brink and Contant [28] with
A–ANN and Ananthanarayananm and Viswanathan model.

. Conclusions

In this work, for the first time, an attempt has been made to
esign a neural network architecture using a genetic algorithm
o predict collection efficiency in venturi scrubbers. The number
f neurons in the hidden layer, the momentum and learning rates
ave been determined using the GA algorithm to minimize the
ime and effort required to find the optimal architecture and
arameters of the back-propagation based on ANN.

Comparison of the results of GA–ANNs with the trial-and-
rror method indicates that the GA approach is more efficient. In
ther words, GA is found to be a good alternative over the trial-
nd-error approach to determine the optimal ANN architecture
nd internal parameters quickly and efficiently.
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